Skip to main content

Writing a program

Typing commands into the Python interpreter is a great way to experiment with Pythons features, but it is not recommended for solving more complex problems. When we want to write a program, we use a text editor to write the Python instructions into a file, which is called a script. By convention, Python scripts have names that end with .py.
To execute the script, you have to tell the Python interpreter the name of the file. In a UNIX or Windows command window, you would type python hello.py as follows:
csev$ cat hello.py
print 'Hello world!'
csev$ python hello.py
Hello world!
csev$
The “csev$” is the operating system prompt, and the “cat hello.py” is showing us that the file “hello.py” has a one line Python program to print a string. We call the Python interpreter and tell it to read its source code from the file “hello.py” instead of prompting us for lines of Python code interactively. You will notice that there was no need to have quit() at the end of the Python program in the file. When Python is reading your source code form a file, it knows to stop when it reaches the end of the file.

Comments

Popular posts from this blog

The Seven-Step Model of Migration

Irrespective of the migration approach adopted, the Seven-step Model of Cloud Migration creates a more rational point of view towards the migration process and offers the ability to imbibe several best practices throughout the journey Step 1: Assess Cloud migration assessments are conducted to understand the complexities in the migration process at the code, design and architectural levels. The investment and the recurring costs are also evaluated along with gauging the tools, test cases, functionalities and other features related to the configuration. Step 2: Isolate The applications to be migrated to the cloud from the internal data center are freed of dependencies pertaining to the environment and the existing system. This step cuts a clearer picture about the complexity of the migration process. Step 3: Map Most organisations hold a detailed mapping of their environment with all the systems and applications. This information can be used to distinguish between the ...

Special Permissions in linux

The setuid permission on an executable file means that the command will run as the user owning the file, not as the user that ran the command. One example is the passwd command: [student@desktopX ~]$ ls -l /usr/bin/passwd -rw s r-xr-x. 1 root root 35504 Jul 16 2010 /usr/bin/passwd In a long listing, you can spot the setuid permissions by a lowercase s where you would normally expect the x (owner execute permissions) to be. If the owner does not have execute permissions, this will be replaced by an uppercase S . The special permission setgid on a directory means that files created in the directory will inherit their group ownership from the directory, rather than inheriting it from the creating user. This is commonly used on group collaborative directories to automatically change a file from the default private group to the shared group, or if files in a directory should be...

RequestsDependencyWarning: urllib3 (1.24.1) or chardet (3.0.4) doesn't match a supported version

import tweepy /usr/lib/python2.7/dist-packages/requests/__init__.py:80: RequestsDependencyWarning: urllib3 (1.24.1) or chardet (3.0.4) doesn't match a supported version!   RequestsDependencyWarning) Traceback (most recent call last):   File "<stdin>", line 1, in <module>   File "/usr/local/lib/python2.7/dist-packages/tweepy/__init__.py", line 14, in <module>     from tweepy.api import API   File "/usr/local/lib/python2.7/dist-packages/tweepy/api.py", line 12, in <module>     from tweepy.binder import bind_api   File "/usr/local/lib/python2.7/dist-packages/tweepy/binder.py", line 11, in <module>     import requests   File "/usr/lib/python2.7/dist-packages/requests/__init__.py", line 97, in <module>     from . import utils   File "/usr/lib/python2.7/dist-packages/requests/utils.py", line 26, in <module>     from ._internal_utils import to...

tag